میکروارگانیسم ها در محیط صنعتی
میکروارگانیسمها (مانند باکتریها، قارچها، مخمرها، و جلبکها) نقش حیاتی در محیطهای صنعتی ایفا میکنند. آنها در فرآیندهای تولیدی، تصفیه پسابها، تولید مواد شیمیایی، و حتی در کاهش آلودگیهای محیطی استفاده میشوند. در زیر به کاربردها، مزایا و چالشهای میکروارگانیسمها در صنعت پرداخته میشود:
۱. کاربردهای اصلی میکروارگانیسمها در صنعت
الف. تولید مواد غذایی و نوشیدنیها
- تخمیر :
- تولید ماست، پنیر، سرکه، نان، آبجو، و شراب با استفاده از مخمرها و باکتریها (مانند *لاکتوباسیلوس* و *ساکارومایسس*).
- تولید افزودنیهای غذایی :
- تولید اسیدهای آمینه، ویتامینها (مانند B12)، و آنزیمها (مثل پروتئاز و لیپاز) توسط میکروارگانیسمها.
ب. صنایع دارویی و بیوتکنولوژی
- تولید آنتیبیوتیکها :
- تولید پنیسیلین از قارچ *پنیسیلیوم* و استرپتومایسین از باکتری *Streptomyces*.
- سنتز پروتئینهای نوترکیب :
- استفاده از *اشریشیا کلی* یا مخمرها برای تولید انسولین، واکسنها، و آنتیبادیها.
- تولید پروبیوتیکها :
- باکتریهای مفید مانند *لاکتوباسیلوس* و *بیفیدوباکتریوم* برای بهبود سلامت انسان.
ج. تصفیه پسابهای صنعتی
- بیوراکتورها :
- استفاده از باکتریهای هوازی و بیهوازی برای تجزیه مواد آلی و سموم در فاضلاب (مانند نیتراتزدایی و کاهش BOD/COD).
- زیستپالایی (Bioremediation) :
- پاکسازی آلایندههای نفتی، فلزات سنگین، و مواد شیمیایی سمی با میکروارگانیسمهای خاص (مثل *Pseudomonas*).
د. تولید انرژیهای تجدیدپذیر
- بیوگاز :
- تخمیر بیهوازی زبالههای آلی توسط باکتریها برای تولید متان.
- بیواتانول :
- تبدیل زیست توده به اتانول با استفاده از مخمرها (مانند *Saccharomyces cerevisiae*).
- میکروجلبکها برای تولید بیودیزل :
- جلبکهای ریز برای تولید لیپیدهای قابل تبدیل به سوخت.
ه. صنایع شیمیایی و معدنی
- بیولیچینگ (Bioleaching) :
- استخراج فلزات (مانند مس، طلا) از سنگ معدن با استفاده از باکتریهای اکسیدکننده (مثل *Acidithiobacillus ferrooxidans*).
- تولید اسیدها و حلالها :
- تولید اسید سیتریک توسط قارچ *Aspergillus niger* یا استون و بوتانول توسط باکتری *Clostridium*.
۲. مزایای استفاده از میکروارگانیسمها در صنعت
- کاهش هزینه ها : جایگزینی فرآیندهای شیمیایی پرهزینه با روشهای زیستی.
- پایدار بودن : کاهش مصرف انرژی و تولید ضایعات سمی.
- انعطافپذیری : توانایی میکروارگانیسمها در سازگاری با شرایط مختلف.
- کارایی بالا : تجزیه مواد پیچیده یا آلایندهها که روشهای شیمیایی قادر به حذف آنها نیستند.
۳. چالشها و محدودیتها
- نیاز به کنترل دقیق شرایط : دما، pH، اکسیژن، و مواد مغذی باید بهینه باشند.
- خطر آلودگی : رشد ناخواسته میکروارگانیسمهای نامطلوب در فرآیندهای صنعتی.
- مقاومت آنتیبیوتیکی : نگرانی از انتقال ژنهای مقاومت در محیطهای صنعتی.
- زمانبر بودن : برخی فرآیندهای زیستی نسبت به روشهای شیمیایی کندترند.
۴. فناوریهای نوین در بهکارگیری میکروارگانیسمها
- مهندسی متابولیک : تغییر مسیرهای متابولیک میکروبها برای افزایش بازدهی.
- کریسپر (CRISPR) : ویرایش ژنتیکی برای ایجاد سویههای صنعتی کارآمدتر.
- بیوراکتورهای پیشرفته : سیستمهای خودکار برای نظارت بر رشد میکروبی و تولید محصول.
- میکروبیوم صنعتی : استفاده از اجتماعات میکروبی پیچیده برای تجزیه مواد سخت.
۵. مثالهای موفق صنعتی
- شرکت Novozymes : تولید انبوه آنزیمهای صنعتی با استفاده از قارچها و باکتریها.
- پالایشگاه های زیستی : تبدیل زیست توده به سوخت با کمک مخمرها.
- تصفیه خانه های فاضلاب : استفاده از لجن فعال (Active Sludge) برای تجزیه مواد آلی.
نتیجه
میکروارگانیسمها به عنوان کارخانه های زیستی در صنعت، نقشی کلیدی در توسعه پایدار، کاهش آلودگی، و تولید محصولات ارزشمند ایفا میکنند. با پیشرفت فناوریهای زیستی، استفاده از آنها در صنایع گسترده تر و کارآمدتر خواهد شد.
ارزیابی پتانسیل خطر تری هالومتانها در آب شرب مراکز نظامی منتخب استان تهران
ارزیابی پتانسیل خطر تری هالومتانها در آب شرب مراکز نظامی منتخب استان تهران
حسین معصوم بیگی، احمد اخلاقی، مهدی راعی، قادر غنی زاده*
دانشکده بهداشت دانشگاه علو.م پزشکی بقیه الله عج
زمینه و هدف : گندزدایی آب آشامیدنی فرآیند ضروری تصفیه آب شرب برای حذف عوامل میکروبی است. تری هالومتانها (THMs) یکی از محصولات جانبی گندزدایی آب با کلر با احتمال سرطانزایی هستند. این مطالعه با هدف ارزیابی پتانسیل خطر THMs در آب شرب مراکز نظامی منتخب استان تهران انجام شد.
روشها: این مطالعه توصیفی مقطعی در سال ۱۳۹۹ با برداشت 30 نمونه آب شرب از آب لوله کشی شهری و آب زیر زمینی مراکز مورد مطالعه انجام شد. اندازه گیری کلر آزاد باقیمانده، دما، pH به روشهای استاندارد و THMs نمونهها با استفاده از دستگاه گاز کروماتوگراف دتکتور جرمی (GC-Mass) و ارزیابی پتانسیل خطر غلظتهای مختلف THMs با استفاده از شاخصهای THQ ،TR وPTDI انجام شد.
یافته ها : متوسط غلظت THMs در مراکز دارای آب زیرزمینی µg/L 25/2 و مراکز دارای آب شهریµg /L 39/2 بود. متوسط غلظت THMs در تمامی مراکز کمتر از استانداردهای توصیه شده بود. همبستگی مثبتی بین غلظت THMs با مقدار کلر آزاد باقیمانده، دما و pH وجود دارد اما معنی دار نبود. میزان دریافت تقریبی قابل تحمل روزانه THMs برای مراکز دارای آب زیرزمینی و شهری به ترتیب mg/kg.day10-3×10/0 و 3-10×11/0 تعیین شد. شاخص خطر سلامت برای تمامی مراکز منتخب001/0 و مقدار شاخص خطر سرطانزایی برای مراکز دارای آب زیرزمینی و شهری به ترتیب 8-10×32/0 و 8-10×34/0 محاسبه شد.
نتیجه گیری : نتایج این مطالعه نشان داد غلظت THMs موجود در آب شرب مراکز منتخب، خطری برای سلامت مصرف کنندگان ندارد.
اوتریفیکاسیون
اتروفیکاسیون دلالت بر غنی شدن پیکره آبی به وسیله مواد آلی ورودی و یا روانآب سطحی حاوی نیترات و فسفات دارد که به طور مستقیم رشد جلبکها و دیگر گیاهان آبزی را کنترل می کند. پروسه اوتریفیکاسیون به طور طبیعی اما آهسته و با دورۀ بالاتر از صد سال اتفاق می افتد اما فعالیتهای انسان فرایند اوتریفیکاسیون را تسریع می کند .
چهار فاکتور اصلی در این پدیده نقش دارندکه شامل نیتروژن ، فسفر، نور خورشید و گاز کربنیک است . عدم وجود هر یک باعث محدود شدن پدیده ا وتریفیکاسیون می شود و رشد الگها را محدود می کند. اوتریفیکاسیون اثرات مخرب زیادی بر روی اکوسیستم های آبی و در نهایت بر روی انسان وحیوانات می گذارد که این اثرات را می توان به صورت اثرات بیولوژیکی و فیزیولوژیکی تقسیم بندی نمود . یکی از اثرات بیولوژیکی اوتریفیکاسیون این است که کیفیت آب را برای مصارف خانگی، تفریحی و دیگر مصارف خراب می کنند . جلبک ها در روی سطح آب ایجاد کف می کنند که این کف مانع نفوذ اکسیژن به آب شده و باعث مرگ ماهی ها می شود .
بیوفیلمها
●مراحل تشکیل بیوفیلم :
به دلیل اهمیت بیوفیلم در بیوتکنولوژی، تیمار آب های زائد، عفونت های باکتریایی و آلودگیهای صنعتی، درک فاکتورهایی که بر چسبیدن و تشکیل بیوفیلم ومیکروکلنی موثر است، برای کنترل و استفاده از چنین فرایندهایی ضروری است. پدیده تشکیل کلنی بر روی سطح را می توان به صورت ۶ مرحله متوالی در نظر گرفت:
۱) وقایعی که ارگانیسم را به نزدیک سطح می آورد.
۲) اتصال برگشت پذیر به سطح
۳) اتصال برگشت نا پذیر به سطح
۴) چسبیدن(Attachment)
۵) رشد و تقسیم ارگانیسم چسبیده به سطح و تشکیل میکروکلنی و بیوفیلم
۶) فاز تفرق ، این مرحله ، در صورتیکه عمل چسبیدن، با تشکیل کلنی بر روی سطوح تازه و دست نخورده همراه شود، در نظر گرفته می شود.
●مدلهای آزمایشگاهی تولید بیوفیلم :
• مدلهای کشت بسته:
ساده ترین روش برای تشکیل بیوفیلم استفاده از محیط های جامد یا مایع می باشد. در این حالت یا جامد مستقیما" سطح لازم برای چسبیدن را ایجاد می کند یا اینکه یک پایه و زمینه ای در تماس مستقیم با محیط مایع قرار داده می شود.
خصوصيات باكتريولوژي آب آشاميدني
دلايل استفاده از كليفرم روده اي به عنوان شاخص معرف آلودگي آب به فاضلاب انساني عبارتند از:
تعداد (غلظت): تعداد بالاي اين باكتري هادر روده (روزانه هر نفر 100 تا 400 ميليارد كليفرم دفع مي كند)، به طوري كه حتي در اثر رقيق شدن هاي مكرر هم، مي توان اطمينان داشت كه اگر هر نوع باكتري در نمونه باشد، حتماً كليفرم روده اي هم وجود دارد.
محیط های کشت
کشت وتکثیر باکتریها در محیط های مصنوعی از مهمترین روشهای تشخیصی در باکتر ی شناسی است . برای کشت موفق باید شرایط مناسب برای رشد باکتری فراهم گردد. ازجمله این شرایط مواد غذایی- حرارت-رطوبت کافی- نمک- PH مناسب- حضور یاعدم حضوراکسیژن می باشد. محیط های كشت را متناسب با نوع آزمایش میتوان به دو صورت مایع و جامد تهیه كرد.
۱- محیط كشت مایع :
محیط های مایع به علت نداشتن آگار در تركیب خود به صورت جامد در نیامده و متناسب با نوع میكروارگانیسم و آزمایشهای مورد نظر میتوان آنها را در لولههای آزمایش ـ ارلن مایر و یا ظروف دیگر مورد استفاده قرار داد.
۲.محیط كشت جامد :
محیط های جامد به علت دارا بودن آگاردر تركیب خود به صورت جامد بوده و متناسب با میكروارگانیسم ها و آزمایش های مورد نظر میتوان آنها را در لوله - ظروف پتری(پلیت)و یا ظروف دیگر مورد استفاده قرار داد . البته محیط های نیمه جامد نیز وجود دارد.که میزان آگار آن نسبت به محیط های جامد کمتر است.مثل SIM
كشت های جامد در لوله را میتوان به صورتهای زیر تهیه كرد :
۱. کشت های عمقی Stab Cultures :
حدود 5 الی 10 میلی لیتر از محیط كشت را در لوله آزمایش ریخته و به طور عمودی میگذارند تا محیط بسته شود. سپس میكروارگانیسمها را توسط سوزن كشت(آنس) به طور عمقی در مركزاین محیط كشت میدهند .
میکروسکوپ الکترونی (electron microscope)
قدرت جداسازی میکروسکوپ الکترونی از میکروسکوپ نوری بهتر است به این معنی که با میکروسکوپ الکترونی اجزای کوچکتری را می توان دید. قبلا گفته شد حد تفکیک (R) به طول موج نوری بستگی دارد که به نمونه می تابد. در حقیقت بین این دو رابطه مستقیمی وجود دارد یعنی هر چقدر طول موج تابشی کوچکتر باشد ،R نیز کوچکتر و قدرت جداسازی بیشتر است. در میکروسکوپ الکترونی بجای استفاده از نور مرئی از امواج الکترون ها استفاده می شود. در شرایط مناسب طول موج الکترون ها به nm ۰/۰۰۵ می رسد. در این طول موج بهترین R ممکن حدود nm ۰/۰۰۲ است. در عمل به علت محدودیت های دیگر ، قدرت جداسازی میکروسکوپ های الکترونی هیچ وقت به این خوبی نیست.حد تفکیک با میکروسکوپ الکترونی برای ملکول های تخلیص شده ی زیستی ، حدودنانومتر ۰/۱ و برای سلول ها نانومتر۲ است که دست کم 100 برابر بهتر از بهترین میکروسکوپ های نوری است.
دو نوع میکروسکوپ الکترونی به نام میکروسکوپ الکترونی گذاره و میکروسکوپ الکترونی نگاره وجود دارد.
رنگ آمیزی گرم : GRAM STAIN
این روش رنگ آمیزی یکی از مهمترین ومتداولترین روشهای رنگ آمیزی درباکتری شناسی است که اولین بار توسط کریسین گرم ابداع شد . دراین رنگ آمیزی باکتریها بر مبنای رنگ باکتری پس ازرنگ آمیزی به دودسته گرم مثبت وگرم منفی تقسیم می شوند . رنگ باکتری پس ازرنگ آمیزی به توانایی حفظ رنگ اول وبه عبارتی به ساختمان دیواره سلولی باکتری بستگی دارد . دررنگ آمیزی گرم باکتریهای گرم مثبت پس ازرنگ آمیزی به رنگ بنفش وباکتری های گرم منفی به رنگ قرمز مشاهده می شود
مکانیسم :
1- رنگ کریستال ویوله رابه مدت 30تا45 ثانیه برروی گسترش ریخته درنتیجه همه باکتری ها بهرنگ بنفش درخواهد درآمد
2- پس از شستشو گسترش با آب به مدت 30تا45 ثانیه بالوگل می پوشانند لوگل باکریستال ویوله ترکیب شده وایجاد کمپلکس های بزرگی می نمایید که باعث تثبیت رنگ کریستال ویوله درداخل دیواره سلولی باکتری می شود . پس ازاین مرحله نیزکماکان همه باکتریها به رنگ بنفش مشاهده می شوند .
مرحله رنگ زدایی مهمترین مرحله رنگ آمیزی است دراین مرحله پس از شستشو لام با آب لام به مدت 15 تا20 ثانیه در معرض موادرنگ زدا مانند الکل استون قرار می گیرد سپس با آب مورد شستشو قرار می گیرد . درباکتریهای گرم منفی که دارای لایه های پپتیدو گلیکان محدود وغشای خارجی غنی از چربی هستند این حلال باعث حذف این لایه ها وغشا می گردد وباکتری رنگ مراحل قبل راازدست می دهد . ولی درباکتریهای گرم مثبت به علت تعداد زیاد لایه های پپتیدوگلیکان وعدم وجود لیپید فراوان در غشا رنگ مرحله قبل ازغشا خارج نمی شود .درنتیجه پس ازاین مرحله باکتریهای گرم منفی بی رنگ ولی باکتریهای گرم مثبت کماکان بنفش باقی خواهند ماند .
4- در انتها سطح گسترش راباسافرانین یا فوشین (قرمز رنگ) به مدت 30 تا45 ثانیه می پوشانیم سپس باآب شستشو داده و پس از خشک شدن بامیکروسکوپ مورد بررسی قرار میگیرد . دراین مرحله باکتریهای بی رنگ به رنگ قرمز درمی آیند وباکتری های بنفش بدون تغییر رنگ باقی می مانند .