درحال مشاهده: مرجع تخصصی آب و فاضلاب | میکروبیولوژی,تصفیه بیولوژیک و زیستی آب و فاضلاب

,.


ادعونیاهدای خون
موسسه محک
اهداء عضو

حذف BOD (نیاز اکسیژن بیوشیمیایی) و COD (نیاز اکسیژن شیمیایی) در تصفیه آب و فاضلاب

۱۴۰۳/۱۱/۲۲
2:10
امیرحسین ستوده بیدختی
 | 

حذف BOD (نیاز اکسیژن بیوشیمیایی) و COD (نیاز اکسیژن شیمیایی) از آب و فاضلاب، یکی از اهداف اصلی در تصفیه فاضلاب شهری و صنعتی است. این دو پارامتر نشان‌دهنده میزان آلاینده‌های آلی و معدنی در آب هستند که کاهش آن‌ها برای حفظ کیفیت آب و محیط زیست ضروری است. در ادامه، روش‌های سنتی و نوین، بهینه‌سازی، فرمول‌ها و ساختارهای اجرایی ارائه می‌شود:

۱. روش‌های سنتی حذف BOD و COD:

الف. روش‌های بیولوژیکی:

  • لجن فعال (Activated Sludge):

    • مکانیسم: استفاده از باکتری‌های هوازی برای تجزیه مواد آلی.

    • فرمول تجزیه:

      CO2+H2O+زیست‌توده →میکروب‌ها --- مواد آلی+O2
    • پارامترهای بهینه:

      • زمان ماند هیدرولیکی (HRT): ۶–۱۲ ساعت

      • غلظت اکسیژن محلول (DO): ۲–۴ mg/L

  • لاگون‌های هوادهی (Aerated Lagoons):

    • مزایا: ساده و کم‌هزینه برای جوامع کوچک.

    • معایب: نیاز به فضای زیاد و بازده پایین در هوای سرد.

ب. روش‌های شیمیایی:

  • اکسیداسیون شیمیایی:

    • کلرزنی:

      Cl2+H2O→HOCl+HCl
    • محدودیت: تشکیل ترکیبات سرطان‌زای تری‌هالومتان‌ها (THMs).

۲. روش‌های نوین حذف BOD و COD:

الف. فرآیندهای اکسیداسیون پیشرفته (AOPs):

  • ازن/UV یا H₂O₂/UV:

    • مکانیسم: تولید رادیکال‌های هیدروکسیل (•OH) برای تجزیه ترکیبات مقاوم.

    • فرمول واکنش:

      H2O2+UV→2•OH
    • بازده: کاهش ۹۰–۹۵٪ COD در زمان کوتاه.

  • فنتون (Fenton’s Reagent):

    • فرمول واکنش:

      Fe2++H2O2→Fe3++•OH+OH
    • نسبت بهینه: ۵:۱ تا H2O2:Fe2+=۱:۱.

ب. فناوری غشایی (Membrane Technology):

  • بیورآکتورهای غشایی (MBR):

    • مزایا: ترکیب لجن فعال با فیلتراسیون غشایی (UF/MF) برای حذف همزمان BOD و جامدات.

    • بازده: ~۹۵٪ کاهش BOD و COD.

ج. الکتروشیمیایی (Electrochemical Oxidation):

  • مکانیسم: استفاده از الکترودهای Ti/PbO₂ یا BDD (الماس دوپ شده با بور) برای اکسیداسیون مستقیم آلاینده‌ها.

  • فرمول کلی:

    CO2+H2O --الکترولیز → آلاینده

۳. بهینه‌سازی روش‌ها:

پارامتر مقدار بهینه

pH در فرآیند فنتون ۲٫۵–۴

دمای راکتور بیولوژیکی ۲۰–۳۵°C

غلظت لجن (MLSS) ۳۰۰۰–۵۰۰۰ mg/L

ولتاژ در الکتروشیمیایی ۵–۲۰ ولت

فرمول‌های کلیدی:

  • نرخ رشد میکروبی (Monod Equation):

    μ=μmax (s/(Ks+S))​))))(
    • μ: نرخ رشد، S: غلظت سوبسترا، Ks: ثابت نیمه اشباع.

  • راندمان حذف BOD/COD:

    η=((Cورودی/Cخروجی)-1)×100

۴. ساخت و اجرا:

۱. طراحی سیستم:

  • برای فاضلاب شهری: ترکیب لجن فعال + MBR + کلرزنی.

  • برای فاضلاب صنعتی: AOPs + الکتروشیمیایی + فیلتر کربن فعال.

۲. مواد و تجهیزات:

  • بیولوژیکی: هواده‌های سطحی، پمپ‌های برگشت لجن.

  • شیمیایی: ژنراتورهای ازن، تانک‌های واکنش فنتون.

  • غشایی: غشاهای پلیمری (PVDF، PES).

۳. نصب و راه‌اندازی:

  • ساخت راکتورهای هوازی با حجم متناسب با دبی فاضلاب.

  • نصب سیستم‌های UV/Ozone با کنترل خودکار دوز.

  • استفاده از الکترودهای BDD در سلول‌های الکتروشیمیایی.

۴. نگهداری:

  • تمیزسازی غشاها با محلول‌های اسیدی/بازی هر ۳ ماه.

  • جایگزینی کاتالیزورهای آهن در فرآیند فنتون.

نتیجه‌گیری:

  • روش‌های سنتی مانند لجن فعال و کلرزنی به دلیل سادگی و هزینه پایین، هنوز کاربرد گسترده‌ای دارند.

  • روش‌های نوین مانند AOPs، MBR و الکتروشیمیایی به دلیل بازده بالا (~۹۵–۹۹٪) و سازگاری با محیط زیست، برای صنایع پیشرفته توصیه می‌شوند.

  • بهینه‌سازی: تنظیم پارامترهای عملیاتی (pH، دما، غلظت مواد شیمیایی) و ترکیب روش‌ها برای دستیابی به حذف کامل.

  • اجرا: انتخاب روش باید بر اساس نوع فاضلاب (شهری/صنعتی)، غلظت BOD/COD و بودجه انجام شود.


مرجع تخصصی آب و فاضلاب

حذف تخم انگل و کیست در تصفیه آب و فاضلاب

۱۴۰۳/۱۱/۲۲
1:43
امیرحسین ستوده بیدختی
 | 

حذف تخم انگل و کیست از آب و فاضلاب به دلیل خطرات بهداشتی ناشی از بیماری‌هایی مانند ژیاردیازیس، کریپتوسپوریدیوز و آسکاریازیس، از اهمیت بالایی برخوردار است. این عوامل بیماری‌زا معمولاً در فاضلاب شهری، کشاورزی و منابع آب آلوده یافت می‌شوند. در ادامه روش‌های سنتی و نوین، بهینه‌سازی، فرمول‌ها و ساختارهای اجرایی ارائه می‌شود:

روش‌های سنتی حذف تخم انگل و کیست:

۱. ته‌نشینی و فیلتراسیون (Sedimentation & Filtration):

  • مکانیسم: استفاده از مخازن ته‌نشینی برای جداسازی ذرات درشت و فیلترهای شنی (Sand Filters) برای حذف ذرات ریزتر.

  • بازده: ~۹۰٪ حذف تخم‌های انگل با اندازه >۲۰ میکرون.

  • محدودیت: عدم کارایی برای کیست‌های ریز (مانند کریپتوسپوریدیوم با اندازه ۴–۶ میکرون).

۲. گندزدایی شیمیایی (Chemical Disinfection):

  • کلرزنی (Chlorination):

    • فرمول واکنش:

      Cl2+H2O→HOCl+HCl
    • محدودیت: مقاومت کیست‌ها (مانند کریپتوسپوریدیوم) به کلر.

  • ازنزنی (Ozonation):

    • فرمول واکنش:

      O3+دیواره کیست→تخریب ساختارO3+دیواره کیست→تخریب ساختار
    • مزایا: مؤثرتر از کلر برای کیست‌های مقاوم.

۳. تابش فرابنفش (UV Disinfection):

  • مکانیسم: آسیب به DNA/RNA انگل‌ها با تابش UV-C (۲۵۴ نانومتر).

  • بازده: ~۹۹٫۹٪ حذف با دوز ≥۴۰ mJ/cm².

  • چالش: نیاز به آب شفاف (کدری پایین).

روش‌های نوین حذف تخم انگل و کیست:

۱. فناوری غشایی (Membrane Technology):

  • اولترافیلتراسیون (UF) و میکروفیلتراسیون (MF):

    • مکانیسم: جداسازی فیزیکی با منافذ ۰٫۰۱–۰٫۱ میکرون.

    • بازده: ~۹۹٫۹۹٪ حذف کیست‌ها (حتی کریپتوسپوریدیوم).

  • مزایا: عدم نیاز به مواد شیمیایی و سازگاری با محیط زیست.

  • معایب: هزینه بالای نگهداری و گرفتگی غشاها.

۲. فرآیندهای اکسیداسیون پیشرفته (AOPs):

  • ترکیب ازن/UV یا H₂O₂/UV برای تولید رادیکال‌های هیدروکسیل (•OH) که دیواره کیست را تخریب می‌کنند.

  • فرمول واکنش:

    H2O2+UV→2•OH
  • بازده: ~۹۹٫۹۹٪ حذف در زمان کوتاه.

۳. نانوفیلتراسیون (Nanofiltration):

  • مکانیسم: استفاده از غشاهای با بار سطحی برای دفع انتخابی کیست‌ها.

  • کاربرد: مناسب برای آب‌های با کدورت بالا.

۴. زیست‌فناوری (Biotechnology):

  • استفاده از آنزیم‌های تجزیه‌کننده (مانند پروتئازها) یا باکتری‌های رقیب برای تخریب دیواره کیست.

بهینه‌سازی روش‌ها:

  • پارامترهای کلیدی:

    • دوز UV: ≥۴۰ mJ/cm² برای حذف کیست‌ها.

    • غلظت کلر آزاد: ۱–۲ mg/L با زمان تماس ≥۳۰ دقیقه.

    • pH: ۶–۸ برای حداکثر کارایی ازن.

    • کدورت آب: <۱ NTU برای تابش UV مؤثر.

  • مدل‌های ریاضی:

    • مدل Chick-Watson برای گندزدایی:

      ln(Nt/N0)=−k⋅Cn⋅t
      • Nt: غلظت باقی‌مانده، C: غلظت ضدعفونی‌کننده، t: زمان تماس.

ساخت و اجرا:

۱. طراحی سیستم:

  • شهری: ترکیب ته‌نشینی + فیلتراسیون غشایی (UF) + UV.

  • روستایی: استفاده از فیلترهای شنی آهسته + قرص‌های کلر.

  • صنعتی: AOPs + نانوفیلتراسیون.

۲. مواد و تجهیزات:

  • فیلترهای شنی: لایه‌های شن با دانه‌بندی ۰٫۲–۱ mm.

  • لامپ‌های UV: لامپ‌های کم فشار با طول موج ۲۵۴ nm.

  • غشاهای UF/MF: جنس پلی سولفون یا PVDF.

۳. نصب و راه‌اندازی:

  • ساخت مخازن ته‌نشینی با شیب ۴۵ درجه.

  • نصب سیستم‌های UV در مسیر جریان آب با سرعت کنترل‌شده.

  • استفاده از پمپ‌های فشار بالا برای غشاهای نانوفیلتراسیون.

۴. نگهداری:

  • شستشوی معکوس (Backwash) فیلترهای شنی هر ۷۲ ساعت.

  • تعویض لامپ‌های UV پس از ۹۰۰۰–۱۲۰۰۰ ساعت کارکرد.

  • نظارت مداوم بر کدورت و pH آب.

فرمول‌های کلیدی:

  • محاسبه دوز UV:

    دوز (mJ/cm²)=شدت (μW/cm²)×زمان (ثانیه)×0.001
  • راندمان حذف (Log Removal Value - LRV):

    (Cخروجی/Cورودی)LRV=log10

نتیجه‌گیری:

روش‌های سنتی مانند کلرزنی و فیلتراسیون شنی به دلیل سادگی و هزینه پایین، هنوز در مناطق کم‌درآمد استفاده می‌شوند. اما روش‌های نوین مانند فناوری غشایی، AOPs و نانوفیلتراسیون به دلیل بازده بالا (~۹۹٫۹۹٪) و سازگاری با محیط زیست، برای سیستم‌های پیشرفته توصیه می‌شوند.
بهینه‌سازی: ترکیب چند روش (مثلاً فیلتراسیون + UV + ازن) برای حذف کامل تخم انگل و کیست ضروری است.
اجرا: طراحی سیستم باید بر اساس کیفیت آب خام، مقررات بهداشتی (مانند استاندارد WHO) و هزینه پروژه انجام شود.


مرجع تخصصی آب و فاضلاب

حذف مواد رادیواکتیو در تصفیه آب و فاضلاب

۱۴۰۳/۱۱/۲۲
1:34
امیرحسین ستوده بیدختی
 | 

حذف مواد رادیواکتیو از آب و فاضلاب به دلیل خطرات شدید سلامتی و زیست‌محیطی، نیازمند روش‌های تخصصی و دقیق است. این مواد شامل ایزوتوپ‌هایی مانند اورانیوم (U)، رادیم (Ra)، سزیوم (Cs)، استرانسیوم (Sr) و ید (I) هستند. در ادامه روش‌های سنتی و نوین، بهینه‌سازی، فرمول‌ها و ساختارهای اجرایی ارائه می‌شود:

روش‌های سنتی حذف مواد رادیواکتیو:

۱. تبادل یونی (Ion Exchange):

  • استفاده از رزین‌های تبادل یونی انتخابی برای جذب ایزوتوپ‌های دارای بار الکتریکی.

  • مثال: رزین‌های زئولیت یا رزین‌های آلی برای جذب سزیوم (Cs⁺) و استرانسیوم (Sr²⁺).

  • فرمول کلی:

    +R-Na+Cs+→R-Cs+Na
  • مزایا: بازده بالا (~۹۵٪) برای یون‌های تک‌ظرفیتی.

  • معایب: نیاز به احیای دوره‌ای و مدیریت پسماند رزین‌های آلوده.

۲. ته‌نشینی شیمیایی (Chemical Precipitation):

  • افزودن مواد شیمیایی مانند فسفات‌ها یا کربنات‌ها برای تشکیل ترکیبات نامحلول.

  • فرمول واکنش برای اورانیوم:

    ↓UO22++2PO43−→UO2(PO4)2
  • مزایا: ساده و کم‌هزینه.

  • معایب: تولید لجن رادیواکتیو و نیاز به دفع ایمن.

۳. جذب سطحی (Adsorption):

  • استفاده از جاذب‌هایی مانند کربن فعال، اکسیدهای فلزی یا رس‌های اصلاح‌شده.

  • مثال: جذب اورانیوم توسط اکسید آهن (Fe₃O₄).

  • فرمول جذب:

    UO2+2+Fe3O4→UO2−Fe3O4
  • مزایا: مناسب برای غلظت‌های پایین.

  • معایب: اشباع سریع جاذب.

روش‌های نوین حذف مواد رادیواکتیو:

۱. نانو جاذب‌های مغناطیسی (Magnetic Nanoadsorbents):

  • استفاده از نانوذرات Fe₃O₄ اصلاح‌شده با گروه‌های عاملی (-SH، -NH₂) برای جذب انتخابی.

  • مثال: جذب سزیوم (Cs⁺) توسط نانوذرات پوشش‌دار با Prussian blue.

  • مزایا: ظرفیت جذب بالا (~۳۰۰ mg/g) و بازیابی آسان با میدان مغناطیسی.

۲. فناوری غشایی پیشرفته (Advanced Membrane Technology):

  • اسمز معکوس (RO) و اولترافیلتراسیون (UF):

    • جداسازی ایزوتوپ‌ها بر اساس اندازه مولکولی و بار الکتریکی.

    • بازده: ۹۹٪ حذف برای اورانیوم و سزیوم.

  • مزایا: مناسب برای سیستم‌های با جریان بالا.

  • معایب: هزینه بالای نگهداری و گرفتگی غشاها.

۳. فرآیندهای الکتروشیمیایی (Electrochemical Processes):

  • الکتروکواگولاسیون (Electrocoagulation):

    • استفاده از الکترودهای آهن یا آلومینیوم برای تولید هیدروکسیدهای فلزی که مواد رادیواکتیو را جذب می‌کنند.

    • فرمول واکنش:

    • -Fe→Fe2++2e

    • ↓Fe2++UO22++OH→Fe(OH)2⋅UO2

۴. زیست‌پالایی (Bioremediation):

  • استفاده از میکروارگانیسم‌ها (مانند Shewanella و Geobacter) برای کاهش یا تثبیت مواد رادیواکتیو.

  • مثال: کاهش اورانیوم (VI) به اورانیوم (IV) غیرمتحرک.

  • پUO2 → باکتری+UO2+2
  • مزایا: سازگار با محیط زیست.

  • معایب: نیاز به کنترل دقیق شرایط رشد.

بهینه‌سازی روش‌ها:

  • pH:

    • تبادل یونی: pH ~۶–۸ برای جذب Cs⁺ و Sr²⁺.

    • زیست‌پالایی: pH ~۵–۷ برای فعالیت باکتری‌ها.

  • زمان تماس: ۱–۴ ساعت برای جذب سطحی و ۶–۲۴ ساعت برای فرآیندهای بیولوژیکی.

  • غلظت جاذب: ۱–۱۰ گرم بر لیتر برای نانو جاذب‌ها.

  • پتانسیل الکتریکی: ۱۰–۳۰ ولت در الکتروکواگولاسیون.

فرمول‌های کلیدی:

  • محصول انحلال (Ksp) برای اورانیوم فسفات:

    Ksp=[UO2 2+][PO43−]2=1.6×10−45
  • نرخ تجزیه بیولوژیکی:

    (Ks+S)/(r=(μmax⋅X⋅S
    • r: نرخ واکنش، μmax: نرخ رشد بیشینه، X: غلظت زیست‌توده، S: غلظت ماده رادیواکتیو.

ساخت و اجرا:

۱. طراحی سیستم:

  • برای ایزوتوپ‌های یونی (Cs⁺, Sr²⁺): ترکیب تبادل یونی با نانو جاذب‌ها.

  • برای اورانیوم: استفاده از الکتروکواگولاسیون + فیلتراسیون غشایی.

  • برای ید (I⁻): جذب سطحی با کربن فعال اصلاح‌شده.

۲. مواد و تجهیزات:

  • رزین‌های تبادل یونی، نانوذرات Fe₃O₄، غشاهای RO/UF، الکترودهای آهن/آلومینیوم.

۳. نصب و راه‌اندازی:

  • ساخت ستون‌های تبادل یونی، سلول‌های الکتروشیمیایی، و سیستم‌های غشایی.

  • نصب سنسورهای تشعشع سنج (Geiger-Muller) برای مانیتورینگ.

۴. نگهداری و دفع:

  • تعویض رزین‌ها و غشاهای اشباع‌شده.

  • دفع ایمن پسماندهای رادیواکتیو در مخازن بتنی با پوشش سرب.

نتیجه‌گیری:

روش‌های سنتی مانند تبادل یونی و ته‌نشینی به دلیل اثربخشی نسبی هنوز استفاده می‌شوند، اما روش‌های نوین مانند نانو جاذب‌ها، فناوری غشایی و زیست‌پالایی به دلیل بازده بالا و کاهش تولید پسماند، برای سیستم‌های پیشرفته توصیه می‌شوند. انتخاب روش باید بر اساس نوع ایزوتوپ، غلظت و مقررات ایمنی-زیست‌محیطی انجام شود. بهینه‌سازی پارامترهایی مانند pH، زمان تماس و دوز جاذب، نقش کلیدی در افزایش بازده دارد. دفع نهایی پسماندها باید مطابق با استانداردهای بین‌المللی (مانند IAEA) انجام شود.


مرجع تخصصی آب و فاضلاب

حذف کدورت در تصفیه آب و فاضلاب

۱۴۰۳/۱۱/۲۰
15:55
امیرحسین ستوده بیدختی
 | 

روش‌های سنتی و نوین حذف کدورت در تصفیه آب و فاضلاب:

۱. کدورت و اهمیت حذف آن

کدورت ناشی از ذرات معلق مانند رس، سیلت، مواد آلی و میکروارگانیسم‌هاست که بر کیفیت آب و کارایی فرآیندهای تصفیه (مانند گندزدایی) تأثیر منفی می‌گذارد.

  • استانداردهای مجاز: کدورت آب شرب معمولاً باید ≤ ۱ NTU باشد.

۲. روش‌های سنتی حذف کدورت

الف. انعقاد و لخته‌سازی (Coagulation/Flocculation)

  • مواد منعقدکننده:

    • آلوم (سولفات آلومینیوم): رایج، دوز ۱۰–۱۰۰ mg/L.

    • کلرید فریک: مناسب برای آب‌های سرد، دوز ۵–۵۰ mg/L.

  • مکانیسم: خنثی‌سازی بار سطحی ذرات و تشکیل لخته‌های سنگین.

  • طراحی:

    • مخزن اختلاط سریع: زمان ماند ۳۰–۶۰ ثانیه، گرادیان سرعت (G) ≈ ۳۰۰–۱۰۰۰ ثانیه⁻¹.

    • مخزن لخته‌سازی: زمان ماند ۲۰–۴۰ دقیقه، G ≈ ۲۰–۸۰ ثانیه⁻¹.

ب. تهنشینی (Sedimentation)

  • انواع:

    • تهنشینی ساده (مخازن مستطیلی یا دایره‌ای).

    • تهنشینی با لوله‌های شیبدار (Tube Settlers).

  • پارامترهای طراحی:

    • سرعت سرریز (Overflow Rate): ۰.۵–۳ m³/m²/h (بسته به ذرات).

    • زمان ماند: ۲–۴ ساعت.

ج. فیلتراسیون (Filtration)

  • انواع فیلترها:

    • شن سریع: سرعت ۵–۱۵ m/h، ضخامت لایه ۰.۶–۱ m.

    • شن کند: سرعت ۰.۱–۰.۴ m/h.

  • مواد فیلتر: شن، آنتراسیت، کربن فعال.

۳. روش‌های نوین حذف کدورت

الف. فیلتراسیون غشایی (Membrane Filtration)

  • انواع:

    • میکروفیلتراسیون (MF): حذف ذرات > ۰.۱ μm.

    • اولترافیلتراسیون (UF): حذف ذرات > ۰.۰۱ μm.

  • مزایا: راندمان بالا (> ۹۹٪)، نیاز به فضای کمتر.

  • چالش‌ها: گرفتگی غشا (Fouling)، هزینه بالای تعمیرات.

ب. شناورسازی با هوای محلول (DAF)

  • مکانیسم: تزریق حباب‌های ریز هوا برای شناورسازی ذرات.

  • کاربرد: آب‌های با کدورت بسیار بالا یا جلبک‌ها.

  • پارامترهای طراحی:

    • فشار تزریق هوا: ۴–۶ bar.

    • زمان تماس: ۱۰–۳۰ دقیقه.

ج. الکتروکوآگولاسیون (Electrocoagulation)

  • مکانیسم: استفاده از جریان الکتریکی برای تولید یون‌های فلزی (آلومینیوم/آهن) و تشکیل لخته.

  • مزایا: کاهش مصرف مواد شیمیایی، حذف همزمان فلزات سنگین.

۴. محاسبات کلیدی

الف. محاسبه دوز منعقدکننده

  • آزمون جارتست (Jar Test):

    • انتخاب دوز بهینه بر اساس کدورت باقیمانده.

  • فرمول:

    دوز (kg/day) = (دوز بهینه (mg/L) × دبی (m³/day)) / ۱۰۰۰  
    • مثال: دبی ۱۰۰۰ m³/day و دوز آلوم ۳۰ mg/L → ۳۰ kg/day.

ب. طراحی مخزن ته نشینی

  • مساحت سطحی:

    A (m²) = دبی (m³/h) / سرعت سرریز (m/h)  
    • مثال: دبی ۵۰ m³/h و سرعت سرریز ۱ m/h → A = ۵۰ m².

ج. شار غشایی در فیلتراسیون

  • فرمول:

    شار (LMH) = دبی (L/h) / سطح غشا (m²)  
    • محدوده معمول: ۵۰–۱۵۰ LMH برای UF.

۵. طراحی سیستم‌ها

الف. سیستم انعقاد-ته نشینی

  • اجزا:

    • مخزن اختلاط سریع با میکسر مکانیکی.

    • مخزن ته نشینی با شیب ۱–۲٪ برای جمع‌آوری لجن.

  • مصالح: بتن با پوشش اپوکسی یا فایبرگلاس.

ب. سیستم DAF

  • تجهیزات:

    • تانک فشار برای اشباع هوا.

    • مخزن شناورسازی با اسکیمر برای جمع‌آوری لجن.

ج. سیستم الکتروکوآگولاسیون

  • اجزا:

    • سلول الکترولیتی با الکترودهای آلومینیوم/آهن.

    • منبع تغذیه DC (ولتاژ ۱۰–۵۰ ولت).

۶. مقایسه روش‌های سنتی و نوین

روش مزایا معایب هزینه

انعقاد-ته نشینی هزینه پایین، سادگی اجرا نیاز به فضای زیاد کم

فیلتراسیون غشایی راندمان بالا، فضای کم هزینه بالای نگهداری بالا

DAF مناسب برای کدورت بالا مصرف انرژی بالا متوسط

الکتروکوآگولاسیون کاهش مواد شیمیایی نیاز به برق پیوسته متوسط-بالا

۷. اجرا و چالش‌ها

  • روش‌های سنتی:

    • چالش: مدیریت لجن و تغییرات کیفیت آب خام.

    • اجرا: نیاز به پایش مداوم pH و دوز منعقدکننده.

  • روش‌های نوین:

    • چالش: هزینه اولیه بالا و نیاز به نیروی متخصص.

    • اجرا: یکپارچه‌سازی با سیستم‌های هوشمند کنترل.

۸. مثال طراحی

شرایط:

  • دبی: ۵۰۰ m³/day

  • کدورت ورودی: ۵۰ NTU → هدف: ≤ ۱ NTU

  • روش انتخابی: انعقاد با آلوم + فیلتر شن سریع.

محاسبات:

  • دوز آلوم: ۳۰ mg/L (بر اساس جارتست) → مصرف روزانه: ۱۵ kg/day.

  • مخزن ته نشینی:

    • سرعت سرریز: ۱ m/h → سطح مقطع: ۵۰۰/۲۴ ≈ ۲۰.۸ m².

  • فیلتر شن:

    • تعداد فیلترها: ۲ واحد با قطر ۳ متر (مساحت هر فیلتر: ۷ m²).

    • سرعت فیلتراسیون: ۵ m/h.

تجهیزات:

  • مخزن ۱۰۰۰ لیتری آلوم با پمپ دوزینگ.

  • فیلترهای شن با لایه‌های شن و ذغال آنتراسیت.

۹. نتیجه‌گیری

انتخاب روش حذف کدورت به عواملی مانند هزینه، راندمان، و ویژگی‌های آب خام بستگی دارد. روش‌های سنتی مانند انعقاد-تهنشینی برای سیستم‌های بزرگ مقرون‌به‌صرفه هستند، در حالی که فناوری‌های نوین مانند فیلتراسیون غشایی برای آب‌های با کدورت پایین و نیاز به کیفیت بالا مناسب‌اند. ترکیب روش‌ها (مثل DAF + فیلتراسیون) می‌تواند بازدهی را افزایش دهد.


مرجع تخصصی آب و فاضلاب

حذف جلبک در تصفیه آب و فاضلاب

۱۴۰۳/۱۱/۲۰
14:53
امیرحسین ستوده بیدختی
 | 

روش‌های سنتی و نوین حذف جلبک در تصفیه آب و فاضلاب: طراحی، محاسبات و اجرا

۱. مقدمه

جلبک‌ها به دلیل رشد سریع در حضور نور، مواد مغذی (نیتروژن و فسفر)، و آب گرم، چالش بزرگی در سیستم‌های تصفیه آب و فاضلاب ایجاد می‌کنند. حذف آن‌ها برای جلوگیری از گرفتگی فیلترها، کاهش کیفیت آب، و تولید ترکیبات سمی (مثل مایکروسیستین) ضروری است.

۲. روش‌های سنتی حذف جلبک

الف. روش‌های شیمیایی

۱. سولفات مس (CuSO₄):

  • مکانیسم: مختل کردن فتوسنتز و نابودی سلول‌های جلبک.

  • دوز مصرف: ۰.۲–۰.۵ mg/L (بسته به گونه جلبک).

  • محدودیت: سمیت برای آبزیان و تجمع مس در محیط.

۲. کلرزنی:

  • مکانیسم: اکسیداسیون دیواره سلولی جلبک.

  • دوز مصرف: ۱–۵ mg/L (بسته به کدورت آب).

  • محدودیت: تشکیل ترکیبات جانبی سرطان‌زا (THMs).

۳. آلوم (سولفات آلومینیوم):

  • مکانیسم: لخته‌سازی و حذف جلبک‌ها همراه با ذرات معلق.

  • دوز مصرف: ۱۰–۵۰ mg/L.

ب. روش‌های فیزیکی

۱. فیلتراسیون (شن، کربن فعال):

  • کاربرد: حذف جلبک‌های معلق.

  • طراحی: استفاده از فیلترهای چندلایه با سرعت جریان ۵–۱۵ m/h.

۲. هوادهی:

  • مکانیسم: کاهش مواد مغذی (فسفر) با اکسیداسیون.

  • اجرا: هوادهی عمقی با دیفیوزرهای حباب ریز.

۳. روش‌های نوین حذف جلبک

الف. فناوری‌های پیشرفته اکسیداسیون

۱. ازون‌زنی (O₃):

  • مکانیسم: تخریب دیواره سلولی جلبک با رادیکال‌های آزاد.

  • دوز مصرف: ۱–۳ mg/L.

  • مزایا: عدم تشکیل لجن و حذف همزمان ترکیبات آلی.

۲. اولتراسونیک (Ultrasonic Treatment):

  • مکانیسم: ایجاد حفره‌های ریز (Cavitation) برای تخریب سلول‌ها.

  • انرژی مورد نیاز: ۲۰–۵۰ W/L به مدت ۱۰–۳۰ دقیقه.

ب. روش‌های بیولوژیکی

۱. زیست‌کنترل (Bio-control):

  • استفاده از موجودات رقیب: مانند دافنی (کک آبی) یا باکتری‌های جلبک‌خوار.

  • محدودیت: نیاز به شرایط زیست‌محیطی خاص.

۲. گیاه‌پالایی (Phytoremediation):

  • استفاده از گیاهان آبزی: مانند نی (Phragmites) برای جذب مواد مغذی.

ج. فناوری نانو

۱. نانوذرات اکسید فلزی (مثل TiO₂):

  • مکانیسم: تولید رادیکال‌های آزاد تحت نور UV برای تخریب جلبک.

  • دوز مصرف: ۰.۱–۰.۵ g/L.

۲. نانوفیلترها:

  • کاربرد: حذف انتخابی جلبک‌ها با اندازه منافذ ۱۰–۱۰۰ نانومتر.

۴. محاسبات کلیدی

الف. محاسبه دوز مواد شیمیایی

  • فرمول پایه:

    دوز (mg/L) = (غلظت هدف × حجم آب) / خلوص ماده  
    • مثال: برای حذف جلبک با سولفات مس (غلظت هدف ۰.۳ mg/L، حجم آب ۱۰۰۰ m³، خلوص ۹۸%):

      دوز = (۰.۳ × ۱,۰۰۰,۰۰۰) / ۰.۹۸ ≈ ۳۰۶ mg/m³ ≈ ۰.۳۰۶ kg/day  

ب. انرژی مورد نیاز اولتراسونیک

  • فرمول:

    انرژی (kWh) = (توان دستگاه (W) × زمان (h)) / ۱۰۰۰  
    • مثال: دستگاه ۵۰۰ W برای ۳۰ دقیقه:

      انرژی = (۵۰۰ × ۰.۵) / ۱۰۰۰ = ۰.۲۵ kWh  

۵. طراحی سیستم‌ها

الف. سیستم شیمیایی

  • تجهیزات: مخازن ذخیره مواد شیمیایی، پمپ‌های دوزینگ، میکسرهای سریع.

  • اجرا: تزریق ماده شیمیایی در ابتدای فرآیند تصفیه (قبل از لخته‌سازی).

ب. سیستم اولتراسونیک

  • پارامترهای طراحی:

    • فرکانس امواج: ۲۰–۴۰ kHz (بهینه برای حفره‌سازی).

    • تعداد مبدل‌ها: بر اساس حجم آب و شدت آلودگی.

  • اجرا: نصب مبدل‌ها در کانال‌های ورودی یا مخازن ذخیره.

ج. سیستم نانوذرات

  • طراحی:

    • تزریق نانوذرات در مخزن واکنش با زمان ماند ۱–۲ ساعت.

    • استفاده از لامپ UV برای فعال‌سازی نانوذرات TiO₂.

۶. مقایسه روش‌های سنتی و نوین

روش مزایا معایب

سولفات مس ارزان، سریع سمیت زیست‌محیطی

کلرزنی باقیمانده گندزدا تشکیل THMs

ازون‌زنی عدم لجن، حذف ترکیبات آلی هزینه بالا

اولتراسونیک عدم نیاز به مواد شیمیایی مصرف انرژی بالا

نانوذرات راندمان بالا در دوز کم هزینه اولیه بالا

۷. اجرا و چالش‌ها

  • روش‌های سنتی:

    • چالش: مدیریت لجن و باقیمانده مواد شیمیایی.

    • اجرا: نیاز به پایش مداوم pH و دوز مواد.

  • روش‌های نوین:

    • چالش: هزینه بالای تجهیزات و نیاز به نیروی متخصص.

    • اجرا: یکپارچه‌سازی با سیستم‌های موجود (مثل ترکیب UV و نانوذرات).

۸. نمونه طراحی عملی

شرایط:

  • حجم آب: ۵۰۰ m³/day

  • روش انتخابی: ترکیبی از آلوم (۲۰ mg/L) و اولتراسونیک (۳۰ دقیقه با ۴۰ kHz).

محاسبات:

  • دوز آلوم: m³ ۵۰۰× ۲۰ mg/L = ۱۰ kg/day.

  • انرژی اولتراسونیک: W ۵۰۰ × ۰.۵ h = ۲۵۰ Wh/day.

تجهیزات:

  • مخزن ۲۰۰ لیتری آلوم با پمپ دوزینگ.

  • دستگاه اولتراسونیک با ۱۰ مبدل ۵۰ واتی.

۹. نتیجه‌گیری

انتخاب روش حذف جلبک به عواملی مانند هزینه، راندمان، و ملاحظات محیط‌ زیستی بستگی دارد. روش‌های سنتی مانند سولفات مس و کلرزنی به دلیل هزینه پایین هنوز پرکاربرد هستند، اما روش‌های نوین مانند اولتراسونیک و نانوذرات با وجود هزینه اولیه بالا، سازگاری بیشتری با محیط زیست دارند. ترکیب روش‌ها (مثل استفاده همزمان از آلوم و UV) می‌تواند بازدهی را افزایش دهد.


مرجع تخصصی آب و فاضلاب

گندزدایی در تصفیه آب و فاضلاب

۱۴۰۳/۱۱/۲۰
14:8
امیرحسین ستوده بیدختی
 | 

گندزدایی در تصفیه آب و فاضلاب: روش‌ها، محاسبات

۱. اهمیت گندزدایی

  • حذف پاتوژن‌ها: باکتری‌ها، ویروس‌ها، و انگل‌ها (مانند اشرشیاکلی، کوکسیدیوم).

  • پیشگیری از بیماری‌ها: وبا، حصبه، و اسهال‌های عفونی.

  • مطابقت با استانداردها: رعایت حد مجاز باقیمانده مواد گندزدا (مثل کلر باقیمانده ≤ ۰.۲–۰.۵ mg/L).

۲. روش‌های گندزدایی

الف. روش‌های شیمیایی

۱. کلرزنی (Cl₂, NaOCl, Ca(OCl)₂):

  • مزایا: ارزان، باقیمانده مؤثر، گسترده در سیستم‌های شهری.

  • معایب: تشکیل ترکیبات جانبی سرطان‌زا (THMs، HAAs).

  • فرمول واکنش:

    Cl₂ + H₂O → HOCl + HCl  
    HOCl → H⁺ + OCl⁻ (گندزدایی مؤثر در pH < ۸)  

۲. ازون (O₃):

  • مزایا: قدرت اکسیداسیون بالا، عدم تشکیل باقیمانده شیمیایی.

  • معایب: هزینه بالا، نیمه‌عمر کوتاه (نیاز به تزریق در محل).

  • فرمول واکنش:

    O₃ → O₂ + O· (رادیکال آزاد اکسیژن)  

۳. کلرآمین‌ها (NH₂Cl):

  • مزایا: کاهش تشکیل THMs، باقیمانده پایدار.

  • معایب: قدرت گندزدایی کمتر نسبت به کلر آزاد.

۴. دی‌اکسید کلر (ClO₂):

  • مزایا: عدم تشکیل THMs، مؤثر در حذف ویروس‌ها.

  • معایب: خطر انفجار در غلظت بالا.

ب. روش‌های فیزیکی

۱. پرتو فرابنفش (UV):

  • مکانیسم: آسیب به DNA پاتوژن‌ها با طول موج ۲۵۴ نانومتر.

  • مزایا: عدم تشکیل ترکیبات جانبی، مناسب برای آب‌های کم کدورت.

  • معایب: نیاز به آب شفاف، عدم باقیمانده گندزدا.

۲. گرمایش (پاستوریزاسیون):

  • کاربرد: سیستم‌های کوچک یا روستایی.

۳. محاسبات کلیدی

الف. دوز گندزدا

  • فرمول پایه (CT Value):

    CT = غلظت گندزدا (mg/L) × زمان تماس (دقیقه)  
    • مثال: برای حذف ۹۹.۹% ویروس‌ها با کلر (CT ≈ ۱۵ mg·min/L).

ب. محاسبه باقیمانده کلر

  • فرمول:

    باقیمانده کلر = دوز تزریقشده – مصرفشده در واکنش با آلاینده‌ها  

ج. انرژی UV مورد نیاز

  • فرمول:

    انرژی (mJ/cm²) = شدت تابش (μW/cm²) × زمان تماس (ثانیه)  
    • حداقل انرژی برای گندزدایی: ۴۰ mJ/cm² (برای باکتری‌ها).

۴. طراحی سیستم‌های گندزدایی

الف. کلرزنی

  • مخزن تماس: زمان ماند ≥ ۳۰ دقیقه برای اطمینان از CT کافی.

  • تجهیزات:

    • سیستم تزریق گاز کلر (فشار پایین).

    • مخازن ذخیره هیپوکلریت سدیم.

ب. سیستم UV

  • پارامترهای طراحی:

    • شفافیت آب: NTU < ۱ برای عبور مؤثر پرتو.

    • تعداد لامپ‌ها: بر اساس دبی و انرژی مورد نیاز.

  • اجزای سیستم:

    • محفظه استیل ضدزنگ با لامپ‌های UV.

    • سیستم تمیزکننده خودکار (برای جلوگیری از رسوب).

ج. ازون‌زنی

  • ژنراتور ازون: تولید ازون با تخلیه الکتریکی یا تابش UV.

  • مخزن تماس: زمان تماس ≈ ۱۰–۲۰ دقیقه.

۵. مقایسه روش‌های گندزدایی

روش مزایا معایب کاربرد

کلرزنی ارزان ، باقیمانده مؤثرتشکیل THMs، خطر سمیت شبکه‌های آب شهری

UV عدم ترکیبات جانبی نیاز به آب شفاف بیمارستان‌ها، صنایع دارویی

ازون قدرت اکسیداسیون بالا هزینه بالا ، نیمه‌عمر کوتاه استخرهای شنا ، آب بطری

کلرآمین‌ها کاهش THMs قدرت گندزدایی کمتر سیستم‌های توزیع طولانی

۶. اجرا و چالش‌ها

  • کلرزنی:

    • خطرات: نشت گاز کلر (نیاز به سیستم‌های ایمنی).

    • مدیریت THMs: استفاده از کربن فعال یا اصلاح pH.

  • UV:

    • رسوب بر لامپ‌ها: نیاز به تمیزکاری دوره‌ای.

  • ازون:

    • تولید در محل: نیاز به تجهیزات پیچیده.

۷. پیشرفت‌های نوین

  • گندزدایی ترکیبی: استفاده همزمان از UV + کلر برای کاهش THMs.

  • فناوری پلاسما: تولید رادیکال‌های آزاد برای گندزدایی سریع.

  • نانوفتوکاتالیست‌ها: استفاده از TiO₂ تحت UV برای تخریب آلاینده‌ها.

۸. مثال طراحی

شرایط:

  • دبی آب: ۵۰۰ m³/day

  • روش گندزدایی: کلرزنی با هیپوکلریت سدیم (غلظت ۱۰% کلر).

  • CT مورد نیاز: ۱۵ mg·min/L.

محاسبات:

  • زمان تماس: ۳۰ دقیقه → غلظت کلر = CT / زمان = ۱۵ / ۳۰ = ۰.۵ mg/L.

  • دوز هیپوکلریت سدیم: (۰.۵ mg/L) / (۰.۱) = ۵ mg/L.

  • مصرف روزانه: m³/day ۵۰۰ × ۵ mg/L = ۲.۵ kg/day.

تجهیزات:

  • مخزن ۱۰۰۰ لیتری هیپوکلریت سدیم.

  • پمپ دوزینگ با دقت ±۰.۱ mg/L.

  • ۹. نتیجه‌گیری

انتخاب روش گندزدایی به عواملی مانند هزینه، کیفیت آب، و استانداردهای بهداشتی بستگی دارد. کلرزنی هنوز پرکاربردترین روش است، اما فناوری‌هایی مانند UV و ازون به دلیل ایمنی و کاهش ترکیبات جانبی در حال گسترش هستند. پایش مداوم باقیمانده گندزدا و تطابق با استانداردهای جهانی کلید موفقیت است.


مرجع تخصصی آب و فاضلاب

برچسب‌ها: گندزدایی

تصفیه بیولوژیک فاضلاب

۱۴۰۳/۱۱/۲۰
0:21
امیرحسین ستوده بیدختی
 | 

انواع تصفیه بیولوژیک فاضلاب، واحدها، روش‌ها، محاسبات، ساخت و شیوه اجرا

۱. انواع روش‌های تصفیه بیولوژیکی

تصفیه بیولوژیکی از میکروارگانیسم‌ها برای تجزیه مواد آلی فاضلاب استفاده می‌کند. روش‌های اصلی عبارتند از:

  • ۱.۱. سیستم لجن فعال (Activated Sludge Process):

    • مکانیسم: هوادهی فاضلاب همراه با مخلوط میکروارگانیسم‌ها (لجن فعال) برای تجزیه مواد آلی.

    • واحدها:

      • مخزن هوادهی (Aeration Tank): تزریق اکسیژن و مخلوط‌سازی.

      • حوضچه ته‌نشینی ثانویه (Secondary Clarifier): جداسازی لجن از آب تصفیه‌شده.

      • بازگردش لجن (Return Activated Sludge): بازگرداندن بخشی از لجن به مخزن هوادهی.

  • ۱.۲. راکتور بیوفیلمی (Biofilm Reactors):

    • مکانیسم: رشد میکروارگانیسم‌ها بر روی سطح بستر (مثل سنگ، پلاستیک یا رسانه‌های مصنوعی).

    • انواع:

      • فیلترهای چکنده (Trickling Filters): پاشش فاضلاب بر روی بستر سنگی یا پلاستیکی.

      • راکتور بیولوژیکی با بستر متحرک (MBBR): استفاده از رسانه‌های شناور در مخزن هوادهی.

      • راکتور بیوفیلم غشایی (MBBR Hybrid): ترکیب بیوفیلم و لجن فعال.

  • ۱.۳. لاگون‌های هوازی و بی‌هوازی (Aerobic & Anaerobic Lagoons):

    • هوازی: استفاده از اکسیژن طبیعی یا مکانیکی برای تجزیه مواد آلی.

    • بی‌هوازی: تجزیه مواد آلی در غیاب اکسیژن و تولید بیوگاز (متان).

  • ۱.۴. سیستم‌های رشد چسبیده (Attached Growth Systems):

    • مثال: فیلترهای بیولوژیکی چرخان (RBC) یا بسترهای ثابت.

۲. محاسبات کلیدی

۲.۱. سیستم لجن فعال

  • زمان ماند هیدرولیکی (HRT):
    HRT=V/Q

    • V: حجم مخزن هوادهی (m³)، QQ: دبی فاضلاب (m³/day).

  • زمان ماند سلولی (SRT):
    SRT=(V×X)/(Qw×Xw)

    • X: غلظت لجن در مخزن هوادهی (mg/L)، QwQw: دبی تخلیه لجن (m³/day).

  • بارگذاری آلی (F/M Ratio):
    (F/M=(Q×S)/(V×X

    • S0: BOD ورودی (mg/L).

  • نیاز اکسیژن (OUR):
    OUR=Q×(S0−Se)×1.42  (kg O₂/day)

۲.۲. فیلتر چکنده

  • بارگذاری هیدرولیکی (HLR):
    HLR=Q/A  (m³/m²/day)

    • A: سطح فیلتر (m²).

  • بارگذاری آلی (OLR):
    OLR=(Q×S0)/A  (kg BOD/m²/day).

۲.۳. لاگون بی‌هوازی

  • زمان ماند (HRT): ۲۰–۵۰ روز.

  • بارگذاری آلی (OLR): ۱–۵ kg COD/m³/day.

۳. ساخت و تجهیزات

۳.۱. سیستم لجن فعال

  • مخزن هوادهی:

    • جنس: بتن مسلح یا فولاد ضدزنگ.

    • هواده‌ها: دیفیوزرهای حباب ریز (Fine Bubble) یا هواده‌های سطحی.

  • حوضچه ته‌نشینی:

    • اسکریپر لجن: سیستم مکانیکی برای جمع‌آوری لجن.

  • پمپ‌ها: انتقال لجن بازگردشی و مازاد.

۳.۲. فیلتر چکنده

  • بستر: سنگ آهک، پلاستیک یا رسانه‌های مصنوعی با سطح ویژه بالا.

  • سیستم پاشش: نازل‌های چرخان یا ثابت.

  • زیرسازی: لایه زهکشی برای جمع‌آوری آب تصفیه‌شده.

۳.۳. راکتور MBBR

  • رسانه‌های شناور: پلیاتیلن با سطح ویژه ۵۰۰–۸۰۰ m²/m³.

  • مخزن: فولاد یا بتن با سیستم هوادهی.

۴. شیوه اجرا

۴.۱. مراحل اجرای سیستم لجن فعال

۱. مطالعات اولیه: آنالیز فاضلاب (BOD، TSS، دما).
۲. طراحی: تعیین حجم مخزن هوادهی، زمان ماند و بارگذاری.
۳. ساخت:

  • بتن‌ریزی مخزن هوادهی و نصب دیفیوزرها.

  • نصب سیستم کنترل هوادهی (DO ≥ 2 mg/L).
    ۴. راه‌اندازی:

  • تلقیح لجن فعال از یک سیستم موجود.

  • تنظیم دبی بازگردش لجن (معمولاً ۳۰–۵۰٪ دبی ورودی).
    ۵. نگهداری:

  • مانیتورینگ مداوم DO، MLSS و SVI.

  • تخلیه لجن مازاد برای حفظ SRT.

۴.۲. مراحل اجرای فیلتر چکنده

۱. آماده‌سازی بستر: نصب لایه زهکشی و رسانه بیولوژیکی.
۲. نصب سیستم پاشش: تنظیم فشار و الگوی پاشش.
۳. راه‌اندازی: رشد بیوفیلم بر روی رسانه (۲–۴ هفته).
۴. نگهداری: شستشوی دوره‌ی بستر برای جلوگیری از گرفتگی.

۵. چالش‌ها و راهکارها

  • کف کردن (Foaming):

    • راهکار: افزودن مواد ضدکف یا تنظیم SRT.

  • شناورشدن لجن (Bulking):

    • راهکار: افزایش اکسیژن یا افزودن مواد منعقدکننده.

  • بوی نامطبوع:

    • راهکار: استفاده از سیستم‌های پوشش یا بیوفیلترهای بو.

۶. مثال کاربردی

  • پارامترهای طراحی برای یک سیستم لجن فعال:

    • دبی فاضلاب: ۱۰۰۰ m³/day.

    • BOD ورودی: ۳۰۰ mg/L.

    • حجم مخزن هوادهی: V=(Q×SRT)/X=(۱۰۰۰×۱۰)/۳۰۰۰=۳.۳ مترمکعب

    • نیاز اکسیژن: ۱۰۰۰×(۳۰۰−۳۰)×1.42=۳۸۳ kg O₂/day.

۷. ملاحظات زیست‌محیطی

  • تولید بیوگاز: در سیستم‌های بی‌هوازی، جمع‌آوری متان برای تولید انرژی.

  • مدیریت لجن: خشک‌کردن، کمپوست یا سوزاندن با رعایت استانداردهای EPA.

تصفیه بیولوژیکی هسته اصلی سیستم‌های تصفیه فاضلاب است و انتخاب روش مناسب به عواملی مانند دبی، کیفیت فاضلاب، فضای موجود و هزینه‌های عملیاتی بستگی دارد.


مرجع تخصصی آب و فاضلاب

کلر در تصفیه آب

۱۴۰۳/۱۱/۱۹
2:33
امیرحسین ستوده بیدختی
 | 

کلر در تصفیه آب: مکانیزم اثر، از بین بردن باکتریها، محاسبه میزان تزریق و طراحی واحد کلرزنی

۱. مکانیزم اثر کلر در ضدعفونی آب

کلر (Cl₂) و مشتقات آن (مانند هیپوکلریت سدیم/کلسیم) با تخریب دیواره سلولی و غشای سیتوپلاسمی باکتریها، ویروسها و سایر پاتوژنها، آنها را غیرفعال میکند.

  • مراحل اصلی:
    ۱. نفوذ به سلول: کلر به صورت اسید هیپوکلروز (HOCl) در آب حل میشود و از غشای سلولی عبور میکند.
    ۲. اکسیداسیون اجزای حیاتی:

    • تخریب پروتئینها، آنزیمها (مثل آنزیمهای تنفسی) و DNA.

    • اختلال در متابولیسم سلولی و توقف تکثیر.
      ۳. لیز سلولی: از دست دادن یکپارچگی غشا و نشت مواد سلولی.

۲. میزان اثرگذاری کلر

  • باکتریها: ۹۹.۹٪ کاهش (۳ log) با دوز ۰.۲–۰.۵ mg/L و زمان تماس ۳۰ دقیقه در pH خنثی.

  • ویروسها: مقاومتر از باکتریها؛ نیاز به دوز ۰.۵–۱ mg/L و زمان تماس طولانی تر.

  • کیستها (ژیاردیا و کریپتوسپوریدیوم): کلر مؤثر نیست و نیاز به روشهای ترکیبی (مثل فیلتراسیون) دارد.

عوامل مؤثر در کارایی کلر:

  • pH آب: اسید هیپوکلروز (HOCl) در pH پایین (۶–۷.۵) غالب است و قدرت ضدعفونی بالاتری دارد.

  • دما: افزایش دما، سرعت واکنش کلر با پاتوژنها را افزایش میدهد.

  • مواد آلی (TOC): مواد آلی با کلر واکنش داده و ترکیبات جانبی مضر (DBPs) مانند تریهالومتانها (THMs) ایجاد میکنند.

۳. فرمولهای محاسبه دوز کلر

الف) دوز کلر مورد نیاز (Chlorine Demand)

دوز کلر (mg/L)=کلر مورد نیاز برای ضدعفونی+کلر مصرفی برای اکسیداسیون مواد آلی

  • مثال:

    • اگر TOC = ۳ mg/L و نیاز به ۰.۵ mg/L کلر آزاد برای ضدعفونی باشد:

    دوز کلر کل=۰.۵+(۱.۲×۳)=۴.۱ mg/L

ب) زمان تماس (Ct Value)

Ct=غلظت کلر باقیمانده (mg/L)×زمان تماس (دقیقه)

  • Ct برای ۹۹٪ کاهش باکتریها: ۱۵–۳۰ mg·min/L.

  • Ct برای ویروسها: ۳۰–۶۰ mg·min/L.

۴. طراحی واحد کلرزنی

اجزای اصلی سیستم کلرزنی:

۱. منبع کلر:

  • کلر گازی (Cl₂): پرکاربرد در تصفیهخانههای بزرگ (نیاز به سیستم ایمنی پیشرفته).

  • هیپوکلریت سدیم (NaOCl): محلول مایع برای سیستمهای کوچک.

  • هیپوکلریت کلسیم (Ca(OCl)₂): قرص یا پودر برای کاربردهای روستایی.

۲. سیستم تزریق:

  • ایجکتور (Venturi): اختلاط کلر گازی با آب.

  • پمپهای دیافراگمی: تزریق محلول هیپوکلریت.

۳. مخزن تماس (Contact Chamber):

  • زمان تماس ≥ ۳۰ دقیقه برای اطمینان از ضدعفونی.

  • طراحی مارپیچی یا بافل برای جلوگیری از جریان کوتاه.

۴. کنترل غلظت کلر باقیمانده:

  • استفاده از سنسورهای آمپرومتری یا رنگسنجی برای پایش Online.

پارامترهای طراحی:

  • دبی آب (Q): تعیین ظرفیت سیستم تزریق.

  • غلظت کلر مورد نیاز: بر اساس کیفیت آب و استانداردهای بهداشتی.

  • ایمنی: نصب سیستمهای تشخیص نشت کلر و تهویه اضطراری.

۵. مزایا و معایب کلرزنی

مزایا:

  • هزینه پایین و در دسترس بودن.

  • اثر باقیمانده (Residual Effect): کلر باقیمانده از آلودگی مجدد در شبکه توزیع جلوگیری میکند.

  • طیف گسترده ضدعفونی (باکتریها، ویروسها، انگلها).

معایب:

  • تشکیل ترکیبات جانبی مضر (DBPs) مانند تریهالومتانها (THMs) و هالواستیک اسیدها (HAAs).

  • سمیت کلر گازی برای انسان و محیط زیست.

  • مقاومت برخی پاتوژنها (مثل کریپتوسپوریدیوم).

۶. استانداردهای کلرزنی

  • WHO: حداکثر کلر باقیمانده در آب آشامیدنی ≤ ۵ mg/L.

  • EPA: حد مجاز THMs ≤ ۰.۰۸ mg/L.

  • استاندارد ملی ایران (۱۰۵۳): کلر باقیمانده آزاد ≥ ۰.۵ mg/L در انتهای شبکه توزیع.

۷. مثال طراحی

  • ورودی: دبی آب = ۱۰ m³/hr، کلر مورد نیاز = ۲ mg/L.

  • محاسبات:

    • مصرف کلر روزانه = ۱۰×۲×۲۴=۴۸۰ g/day

    • انتخاب پمپ دیافراگمی با ظرفیت ۵۰۰ g/day.

    • حجم مخزن تماس  m³۱۰×۰.۵=۵m³ (برای زمان تماس ۳۰ دقیقه).

۸. جمع بندی

کلرزنی به عنوان روشی مقرون بهصرفه و موثر در ضدعفونی آب، نقشی کلیدی در تأمین آب آشامیدنی سالم ایفا میکند. طراحی سیستم باید بر اساس کیفیت آب ورودی، دبی و مقررات بهداشتی انجام شود. کنترل دقیق غلظت کلر باقیمانده و ترکیبات جانبی، همراه با رعایت ایمنی، از الزامات اصلی است. در مواردی که تشکیل DBPs نگران کننده است، استفاده از روش های ترکیبی (مثل کلرآمیناسیون یا UV) توصیه میشود.


مرجع تخصصی آب و فاضلاب

لیست مطالب

سعی بر آن است که مطالب مرجع تخصصی آب و فاضلاب شامل مسایل ، مقالات و اخبار عمران آب و فاضلاب,آب و فاضلاب و به صورت تخصصی فرآیند های تصفیه آب و فاضلاب،مهندسی آب و فاضلاب و صنعت آب و فاضلاب باشد.
دانشنامه آنلاین آب و فاضلاب
رشته های مرتبط:مهندسی عمران آب و فاضلاب،مهندسی تکنولوژی آب و فاضلاب،مهندسی آب و فاضلاب،محیط زیست،مهندسی بهداشت محیط،مهندسی آب،مهندسی شیمی و...


امیرحسین ستوده بیدختی
تمامی حقوق این وب سایت متعلق به مرجع تخصصی آب و فاضلاب است. |طراحی و توسعه:امیرحسین ستوده بیدختی|