حذف دترجنتها (شویندهها) در تصفیه آب و فاضلاب
حذف دترجنتها (شویندهها) از آب و فاضلاب به دلیل اثرات نامطلوبی مانند ایجاد کف، سمیت برای آبزیان و اختلال در فرآیندهای تصفیه، از اهمیت بالایی برخوردار است. دترجنتها معمولاً از سورفکتانتها (مواد فعال سطحی) تشکیل شدهاند که به دو دسته آنیونی (مانند سدیم لوریل سولفات) و غیرآنیونی (مانند اتوکسیلات) تقسیم میشوند. در ادامه روشهای سنتی و نوین حذف دترجنت، بهینهسازی، فرمولها و ساختارهای اجرایی ارائه میشود:
روشهای سنتی حذف دترجنت:
۱. انعقاد و لختهسازی (Coagulation & Flocculation):
استفاده از مواد شیمیایی مانند آلوم (Al₂(SO₄)₃) یا کلرید فریک (FeCl₃) برای خنثیسازی بار سطحی دترجنتها و تشکیل لخته.
فرمول واکنش:
Al-دترجنت↓→Al3++دترجنت−مزایا: کاهش ذرات معلق و کف.
معایب: تولید لجن و نیاز به دفع مواد شیمیایی.
۲. جذب سطحی (Adsorption):
استفاده از کربن فعال یا زئولیتها برای جذب دترجنتها.
مکانیسم: جذب از طریق نیروهای واندروالسی و پیوند هیدروژنی.
مزایا: مناسب برای غلظتهای پایین.
معایب: اشباع سریع جاذب و نیاز به احیای دورهای.
۳. تصفیه بیولوژیکی (Biological Treatment):
استفاده از باکتریهای هوازی (مانند Pseudomonas) برای تجزیه دترجنتهای زیستتخریبپذیر.
فرمول تجزیه:
CO2+H2O+زیستتوده →میکروبها-- دترجنت+O2 مزایا: سازگار با محیط زیست.
معایب: عدم کارایی برای دترجنتهای مقاوم.
روشهای نوین حذف دترجنت:
۱. فرآیندهای اکسیداسیون پیشرفته (AOPs):
استفاده از ترکیب ازن (O₃)، پراکسید هیدروژن (H₂O₂) و اشعه UV برای تولید رادیکالهای هیدروکسیل (•OH) که دترجنتها را تجزیه میکنند.
فرمول واکنش:
محصولات بیخطر+•OH→CO2+H2O+دترجنتمزایا: تجزیه کامل و کاهش ترکیبات سمی.
۲. فناوری غشایی (Membrane Technology):
اسمز معکوس (RO) و اولترافیلتراسیون (UF):
جداسازی دترجنتها بر اساس اندازه مولکولی و بار الکتریکی.
بازده: ۹۵–۹۹٪ حذف دترجنت.
مزایا: مناسب برای سیستمهای صنعتی.
معایب: هزینه بالای انرژی و گرفتگی غشاها.
۳. نانو جاذبهای مغناطیسی (Magnetic Nanoadsorbents):
استفاده از نانوذرات Fe₃O₄ اصلاحشده با گروههای عاملی (-NH₂، -COOH) برای جذب انتخابی دترجنت.
مزایا: ظرفیت جذب بالا (~۲۰۰ mg/g) و امکان بازیابی جاذب با میدان مغناطیسی.
۴. الکتروکواگولاسیون (Electrocoagulation):
استفاده از الکترودهای آهن یا آلومینیوم و جریان الکتریکی برای تولید هیدروکسیدهای فلزی که دترجنتها را جذب میکنند.
فرمول واکنش:
−Fe→Fe2++2e- Fe-دترجنت↓→ +Fe2+دترجنت
بهینهسازی روشها:
pH:
انعقاد: pH ~۶–۷ برای آلوم و ~۴–۵ برای کلرید فریک.
AOPs: pH ~۳–۵ برای افزایش تولید رادیکالهای •OH.
دوز مواد شیمیایی: ۵۰–۲۰۰ mg/L آلوم یا FeCl₃ بسته به غلظت دترجنت.
زمان تماس: ۳۰–۶۰ دقیقه برای اکسیداسیون و ۲–۴ ساعت برای جذب سطحی.
ولتاژ در الکتروکواگولاسیون: ۱۰–۳۰ ولت.
فرمولهای کلیدی:
ایزوترم جذب فروندلیش:
- lnqe=lnKF+(1/n)lnCe
qe: ظرفیت جذب (mg/g)، Ce: غلظت تعادلی (mg/L).
نرخ تجزیه در AOPs:
r=k[دترجنت][•OH]
ساخت و اجرا:
۱. طراحی سیستم:
صنایع شوینده: ترکیب انعقاد + AOPs + فیلتراسیون غشایی.
فاضلاب شهری: استفاده از بیوراکتورهای هوازی + جذب سطحی.
۲. مواد و تجهیزات:مواد شیمیایی (آلوم، H₂O₂)، نانوذرات Fe₃O₄، غشاهای UF/RO، ژنراتورهای ازن.
۳. نصب و راهاندازی:ساخت مخازن انعقاد، نصب سیستمهای UV/Ozone، و راهاندازی بیوراکتورها.
استفاده از سنسورهای pH و TOC برای مانیتورینگ.
۴. نگهداری:تعویض غشاها، احیای جاذبها و مدیریت لجنهای شیمیایی.
نتیجهگیری:
روشهای سنتی مانند انعقاد و جذب سطحی به دلیل سادگی و هزینه پایین، هنوز در صنایع کوچک استفاده میشوند. اما روشهای نوین مانند AOPs، نانو جاذبها و الکتروکواگولاسیون به دلیل بازده بالا و سازگاری با محیط زیست، برای سیستمهای پیشرفته توصیه میشوند. انتخاب روش نهایی باید بر اساس نوع دترجنت (آنیونی/غیرآنیونی)، غلظت و مقررات زیستمحیطی انجام شود. بهینهسازی پارامترهایی مانند pH، دوز مواد شیمیایی و زمان تماس، نقش کلیدی در افزایش بازده دارد.