تصفیه آب و فاضلاب به روش بیوفیلتر
تصفیه آب و فاضلاب به روش بیوفیلتر:
۱. مقدمه
بیوفیلتراسیون یک روش زیستمحیطی برای حذف آلایندههای آلی، نیتروژن، فسفر و ترکیبات سمی از آب و فاضلاب با استفاده از میکروارگانیسمهای چسبیده به یک بستر جامد (رسانه) است. این روش به دلیل هزینه پایین، سازگاری با محیط زیست و راندمان بالا، در تصفیه خانههای شهری و صنعتی کاربرد گسترده دارد.
۲. مکانیسم عملکرد
تجزیه هوازی: باکتریها و قارچها، آلایندههای آلی را به CO₂ و H₂O تبدیل میکنند.
نیتراتزدایی: باکتریهای بیهوازی نیترات (NO₃⁻) را به نیتروژن گازی (N₂) تبدیل میکنند.
جذب سطحی: آلایندهها روی سطح رسانه یا بیوفیلم جذب میشوند.
۳. انواع بیوفیلترها
نوع رسانه کاربرد
بیوفیلتر چکنده سنگ، پلاستیک یا سرامیک تصفیه فاضلاب شهری
بیوفیلتر غوطهور شن، زغال یا پکینگ پلیمری حذف نیتروژن و فسفر
MBBR حاملهای متحرک (مثل پلی اتیلن) تصفیه پساب صنعتی با بار آلی بالا
۴. طراحی سیستم بیوفیلتر
الف. پارامترهای کلیدی طراحی
۱. نوع آلاینده: BOD، نیتروژن، فسفر یا ترکیبات خاص.
۲. رسانه: سطح ویژه (m²/m³)، تخلخل و مقاومت مکانیکی.
۳. بار آلی: بر حسب kg BOD/m³/day.
۴. زمان ماند هیدرولیکی (HRT): معمولاً ۲–۸ ساعت.
۵. اکسیژن مورد نیاز: DO ≥ ۲ mg/L برای فرآیند هوازی.
ب. محاسبات کلیدی
۱. محاسبه حجم راکتور:
حجم (m³) = دبی (m³/day) × زمان ماند (day)
مثال: دبی ۱۰۰ m³/day و HRT = ۶ ساعت (۰.۲۵ روز) → حجم ≈ ۲۵ m³.
۲. بار آلی:
بار آلی (kg BOD/m³/day) = (غلظت BOD ورودی (mg/L) × دبی (m³/day)) / حجم راکتور (m³)
مثال: BOD ورودی ۳۰۰ mg/L، دبی ۵۰ m³/day، حجم ۱۰ m³ → بار آلی = ۱.۵ kg/m³/day.
۳. نیاز به اکسیژن:
اکسیژن مورد نیاز (kg O₂/day) = (BOD ورودی (kg/day) × راندمان حذف) / ۰.۳
مثال: BOD ورودی ۱۵ kg/day، راندمان ۹۰% → نیاز ≈ ۴۵ kg O₂/day.
۴. سطح ویژه رسانه:
سطح ویژه مؤثر (m²/m³) = (بار آلی × ۱۰۰۰) / نرخ بارگذاری (g BOD/m²/day)
۵. ساخت و تجهیزات
الف. انتخاب رسانه
پکینگ پلاستیکی: سطح ویژه ۲۰۰–۵۰۰ m²/m³، مناسب برای MBBR.
شن و سنگ: ارزان، اما سطح ویژه پایین (۵۰–۱۰۰ m²/m³).
زغال فعال: جذب ترکیبات آلی + زیستپالایی.
ب. اجزای سیستم
راکتور: مخزن بتنی، فایبرگلاس یا فلزی با سیستم توزیع آب.
سیستم هوادهی: دیفیوزرهای حباب ریز یا هوادهی سطحی.
سیستم برگشت لجن: برای حفظ تراکم بیومس.
ج. مراحل اجرا
۱. آمادهسازی رسانه: شستشو و ضدعفونی.
۲. ایجاد بیوفیلم: تلقیح رسانه با باکتریهای مورد نظر (مانند Nitrosomonas).
۳. راهاندازی تدریجی: افزایش دبی به مرور زمان برای تطبیق میکروارگانیسمها.
۴. پایش مداوم: اندازهگیری DO، pH، دما و غلظت آلایندهها.
۶. چالشها و مدیریت
گرفتگی رسانه: شستشوی معکوس با آب یا هوا.
تغییرات دما: استفاده از عایقبندی یا سیستمهای گرمایش/سرمایش.
سمیت آلایندهها: پیشتصفیه برای حذف مواد بازدارنده رشد میکروبی.
تعویض رسانه: هر ۵–۱۰ سال بسته به فرسودگی.
۷. مثال طراحی
شرایط:
دبی فاضلاب: ۲۰۰ m³/day
BOD ورودی: ۴۰۰ mg/L
هدف: حذف ۹۰% BOD
روش انتخابی: بیوفیلتر چکنده با پکینگ پلاستیکی
محاسبات:
بار آلی: ۴۰۰ mg/L × ۲۰۰ m³/day = ۸۰ kg BOD/day.
حجم راکتور: با فرض بار آلی ۰.۵ kg BOD/m³/day → حجم = ۸۰ / ۰.۵ = ۱۶۰ m³.
مساحت سطحی: با فرض ارتفاع ۳ متر → مساحت = ۱۶۰ / ۳ ≈ ۵۳.۳ m².
سیستم هوادهی: نیاز اکسیژن ≈ ۸۰ × ۰.۹ / ۰.۳ = ۲۴۰ kg O₂/day.
تجهیزات:
راکتور بتنی به ابعاد ۱۰m × ۵.۳m × ۳m.
پکینگ پلاستیکی با سطح ویژه ۳۰۰ m²/m³.
هوادهی با ۲۰ دیفیوزر حباب ریز.
۸. پیشرفتهای نوین
نانو رسانهها: افزایش سطح ویژه تا ۱۰۰۰ m²/m³ با استفاده از نانولولههای کربنی.
بیوفیلترهای هوشمند: کنترل خودکار پارامترها با سنسورهای IoT.
بیوفیلترهای هیبریدی: ترکیب با روشهای شیمیایی برای حذف فلزات سنگین.
۹. نتیجهگیری
بیوفیلترها به عنوان یک روش پایدار و مقرونبهصرفه، نقش کلیدی در تصفیه آب و فاضلاب دارند. طراحی دقیق بر اساس پارامترهای هیدرولیکی و بیولوژیکی، انتخاب رسانه مناسب و مدیریت بهینه فرآیند، تضمینکننده عملکرد مؤثر سیستم است. فناوریهای نوین مانند نانو رسانهها و سیستمهای هوشمند، آینده این روش را امیدوارکننده ساختهاند.